Strongly noncosingular modules

Authors

  • Y. Alagöz İzmir Institute of Technology‎, ‎Department‎ ‎of Mathematics‎, ‎35430‎, İzmir, Turkey.
  • Y. Durğun Bitlis Eren University‎, ‎Department of Mathematics‎, ‎13000‎, Bitlis, ‎Turkey.
Abstract:

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingular R-modules; (3)absolutely coneat modules are strongly noncosingular if and only if R is a right Max-ring and injective modules are strongly noncosingular; (4) a commutative ring R is semisimple if and only if the class of injective modules coincides with the class of strongly noncosingular R-modules.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

strongly noncosingular modules

an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

full text

Strongly cotop modules

In this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.

full text

strongly cotop modules

in this paper, we introduce the dual notion of strongly top modules and study some of the basic properties of this class of modules.

full text

On the decomposition of noncosingular $sum$-lifting modules

Let $R$ be a right artinian ring or a perfect commutative‎‎ring‎. ‎Let $M$ be a noncosingular self-generator $sum$-lifting‎‎module‎. ‎Then $M$ has a direct decomposition $M=oplus_{iin I} M_i$‎,‎where each $M_i$ is noetherian quasi-projective and each‎‎endomorphism ring $End(M_i)$ is local‎.

full text

STRONGLY DUO AND CO-MULTIPLICATION MODULES

Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...

full text

Strongly ω-Gorenstein Modules

We introduce the notion of strongly ω -Gorenstein modules, where ω is a faithfully balanced self-orthogonal module. This gives a common generalization of both Gorenstein projective (injective) modules and ω-Gorenstein modules. We investigate some characterizations of strongly ω -Gorenstein modules. Consequently, some properties under change of rings are obtained. Keywords—faithfully balanced se...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 42  issue 4

pages  999- 1013

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023